Conducted EMI filter design for SMPS

Jukka-Pekka Sjöroos Helsinki University of Technology Power Electronics Laboratory

Emi filter design Design steps step 3: Determine filter corner frequencys by drawing a 40db/dec slope which is tangent to the required attenuation for DM and CM Step 4: Calculate component values CM components: C_v is limited to 3300pF because of safety reasons and the corner frequency $f_{R,CM}$ has been found in step 3 so we get the common mode inductor $L_{\rm C} = \left(\frac{1}{2\pi * f_{R,CM}}\right)^2 * \frac{1}{2C_{\rm v}}$ DM components: There is freedom of choosing differential mode inductor $L_{\rm dm}$. To reduce cost and size of the filter often manufactures use only common mode inductor's leakage inductance $L_{\rm leakage}\,$ as DM inductor. The corner frequency $f_{\rm R,DM}$ has been found in step 3. Thus the DM capacitors are $C_{x1} = C_{x2} = C_{DM} = \left(\frac{1}{2\pi * f_{R,CM}}\right)^2 * \frac{1}{L_{leakage}}$ 4/20/2004 Conducted EMI filter design for 17 SMPS

