SEMICONDUCTロR*

AC/DC Switch Mode Power Supply
 Design Guide

> OPTOCOUPLER
Table Of Contents
Product Information
Total Solutions 3
Fairchild Power Switch (FPS ${ }^{\top M}$) 4-5
Pulse Width Modulator (PWM) Controllers 6
Power Factor Correction (PFC) Controllers 7
Optocoupler Solutions 8
Voltage References and Shunt Regulators 9
High Voltage Switching Technologies 10
Switch Mode Power Supply IGBTs 10
High-Voltage MOSFETs 11
Additional Discrete Components 12
Design Examples
Examples of Typical Application Circuits 13-22
1W Power Supply with less than 100 mW Standby Power using FSD2 10 13
Dual Negative Output Non-Isolated Flyback using FSD200 14
10W Single Output Isolated Flyback using FSDM0265RN and Zener Diode 15
10W Multiple Output Isolated Flyback using FSD2 10 with Primary Side Regulation 16
2.5W Single Output Isolated Flyback using FSD200 with KA431 Reference. 17
180W-200W Quasi-Resonant Flyback with Input Power Factor Correction using KA5Q1265RF, FAN7527B, and FQP13N50C 18-19
16W Multiple Output Isolated Flyback Converter using FSDM0265RN 20
40W Isolated Flyback Power Supply using FSDM07652R 21
24W Flyback Converter using 1500V IGBT and FAN7554 22
Design Ideas
250W to 450W Desktop PC Forward Switch Mode Power Supply 23
500W Telecom/Server Double Switch Forward Switch Mode Power Supply 24
500W Telecom/Server ZVS Phase-Shift Full Bridge Switch Mode Power Supply 25
Application Note Highlights
Design Guidelines for Off-Line Flyback Converters using Fairchild Power Switch (FPS) - AN-4 137 26-27
Power Factor Correction (PFC) Basics - AN-42047 28
Choosing Power Switching Devices for SMPS Designs - AN-7010 29-30
Global Power Resources ${ }^{\text {TM }}$
Design Support 31

Total Solutions

Fairchild is the only semiconductor supplier that provides a complete porffolio for $\mathrm{AC} / \mathrm{DC}$ switch mode power supplies. Whether your design is IW or 1200W, Fairchild's solutions help achieve increased efficiency, reduce stand-by power, and support the industry's IW initiatives. These solutions include: SuperFETTM technology that achieves world-class $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and provides higher power density, reducing heat sink size, Green Fairchild Power Switch (FPS) that offers state-of-the-art stand-by power supporting the industry's initiatives targeting less than 1W, and Power Factor Correction ICs that decrease cost and increase system efficiency.

SMPS IGBTs

- Increase output power
- Reduce system cost
- Stealth ${ }^{\text {TM }}$ Diode Co-Pack enhances recovery time

Power Factor Correction (PFC) Controllers

- Increase efficiency
- Increase usable PFC bandwidth and simplifiy compensation
- Reduce ripple voltage and output capacitor size

High Voltage MOSFETs

- 25% lower A * $R_{\text {DS(ON) }}$ minimizes system size
- 100\% Avalanche tested
- Voltage ranges from 60V to 1000 V
- SuperFET offers best in class FOM

Additional Discrete Components Voltage References/Shunt Regulators

- Low-Voltage MOSFETs - Programmable output voltages
- MOSFET and Schottky Combos
- Diodes and Rectifiers
- Bipolar Transistors and JFETs
- Temperature compensated
- Low output noise
- Fast turn-on time

- Green current mode reduces power
consumption with burst mode operation
- Internal start-up switch
- Programmable soft start
- Over Voltage Protection (OVP)

Optically Isolated Error Amplifier

- Single component solution vs. 2 components
- High isolation, 5,000V RMS

Fairchild Power Switch (FPS)

- Green FPS reduces power consumption with burst mode operation
- Avalanche rated SenseFET ${ }^{\text {тм }}$
- Frequency modulation reduces EMI
- Low tolerance results in easier design, fewer components
- Save board space

Optocoupler

- MICROCOUPLER ${ }^{\text {TM }}$ offers stable CTR up to $125^{\circ} \mathrm{C}$
- Narrow Current Transfer Ratio (CTR)
- Multiple package types for ease of use

Fairchild Power Switch (FPS)

Fairchild's FPS products are highly integrated off-line power switches with a fully avalanche rated SenseFET and a current mode PWM IC (see Burst Mode Operation figure below). The Green FPS products help reduce the system's stand-by power to below 1Watt with the burst mode operation.

- Advanced burst mode operation supports IW standby power regulations
- Integrated frequency modulation reduces EMI emissions
- Various protection and control functions reduce Bill-of-Material costs

Burst Mode Operation Reduces Stand-By

Power to Less than 1W

Frequency Modulation Reduces Overall Electromagnetic Interference (EMI)

EMI reduction can be accomplished by modulating the switching frequency of a SMPS
Frequency modulation can reduce EMI by spreading the energy over a wider frequency range.

Fairchild Power Switch (FPS)

Green FPS

Part Number	Application	$\begin{aligned} & \mathrm{P}_{0(\max)} \text { (W) } \\ & 85-265 \mathrm{VAC} \end{aligned}$	$\begin{gathered} P_{0 \text { (max) }}(W) \\ 230 V A C \pm 15 \% \end{gathered}$	Peak Current Limit (A)	HV-FET Rating (V)	Rds(on) max (Ω)	Switching Frequency (V)	Frequency Mod. (kHz)	Package
FSCM0565RC	STB, LCD Monitor	70	85	2.5	650	2.2	66	Yes	TO220-5L
FSCM0565RD	STB, LCD Monitor	50	65	2.5	650	2.2	66	Yes	D2PAK-5L
FSCM0765RC	STB, LCD Monitor	85	95	3	650	1.6	66	Yes	TO220-5L
FSCM0765RD	STB, LCD Monitor	60	70	3	650	1.6	66	Yes	D2PAK-5L
FSCQ0765RT	CTV, DVD, Audio Electronics	85	100	5	650	1.6	QRC	No	TO220F-5L
FSCQ1265RT	CTV, DVD, Audio Electronics	140	170	7	650	0.9	QRC	No	TO220F-5L
FSCQ1565RP	CTV, DVD, Audio Electronics	210	250	11.5	650	0.65	QRC	No	TO3PF-7L
FSCQ1565RT	CTV, DVD, Audio Electronics	170	210	8	650	0.65	QRC	No	TO220F-5L
FSD1000	PC Main + Aux , LCD	12	13.6	Adjustable	700	9	70	No	DIPH-12
FSD200B	Charger, Aux Power	5	7	0.3	700	32	134	Yes	LSOP-7
FSD200BM	Charger, Aux Power	5	7	0.3	700	32	134	Yes	DIP-7
FSD210B	Charger, Aux Power	5	7	0.3	700	32	134	Yes	DIP-7
FSD210BM	Charger, Aux Power	5	7	0.3	700	32	134	Yes	LSOP-7
FSDH0265RL	DVDP, STB, Fax, Printer, Scanner, Adapters	20	27	1.5	650	6	100	Yes	LSOP-8
FSDH0265RN	DVDP, STB, Fax, Printer, Scanner, Adapters	20	27	1.5	650	6	100	Yes	DIP-8
FSDH32 1	PC Aux, STB, DVD, Adapters	12	17	0.7	650	19	100	Yes	DIP-8
FSDH321L	PC Aux, STB, DVD, Adapters	12	17	0.7	650	19	100	Yes	LSOP-8
FSDL0165RL	DVDP, STB, Printer, Fax, Scanner, Adapters	12	23	1.2	650	10	50	Yes	LSOP-8
FSDL0165RN	DVDP, STB, Printer, Fax, Scanner, Adapters	12	23	1.2	650	10	50	Yes	DIP-8
FSDLO365RL	DVDP, STB, Printer, Fax, Scanner, Adapters	24	30	2.15	650	4.5	50	Yes	LSOP-8
FSDL0365RNB	DVDP, STB, Printer, Fax, Scanner, Adapters	24	30	2.15	650	4.5	50	Yes	DIP-8
FSDL321	PC Aux, STB, DVD, Adapters	12	17	0.7	650	19	50	Yes	DIP-8
FSDL321L	PC Aux, STB, DVD, Adapters	12	17	0.7	650	19	50	Yes	LSOP-8
FSDM0265RNB	DVDP, STB, Fax, Printer, Scanner, Adapters	20	27	1.5	650	6	67	Yes	DIP-8
FSDM0365RL	DVDP, STB, Fax, Printer, Scanner, Adapters	24	30	2.15	650	4.5	67	Yes	LSOP-8
FSDM0365RNB	DVDP, STB, Fax, Printer, Scanner, Adapters	24	30	2.15	650	4.5	67	Yes	DIP-8
FSDM0565RB	LCD , STB, Adapters	48	56	2.3	650	2.2	66	No	TO220F-6L
FSDM07652RB	LCD , STB, Adapters	56	64	2.5	650	1.6	66	No	TO220F-6L
FSDM311	Aux Power, Adapters	12	20	0.55	650	19	70	No	DIP-8
FSDM311L	Aux Power, Adapters	12	20	0.55	650	19	70	No	LSOP-8

Pulse Width Modulator (PWM) Controllers

Similarly to Green FPS, the FAN7601, FAN7602, and 7610 are green PWM controllers, offering burst mode operation during stand-by mode allowing the design to meet the International Energy Agency's (IEA) " 1-Watt Initiative".

- Burst mode operation
- Operating frequency of up to 300 kHz
- Operating current 4 mA (max)
- Programmable soft start 20 mS

Burst Mode Operation Diagram

Burst mode operation: In order to minimize the power dissipation in standby mode, the Green PWMs implement burst mode functionality. As the load decreases, the feedback voltage decreases. As shown in the figure, the device automatically enters burst mode when the feedback voltage drops below $\mathrm{V}_{\text {BURL }}$. At this point switching stops and the output voltages start to drop at a rate dependent on standby current load. This causes the feedback voltage to rise. Once it passes $V_{\text {BURH }}$ switching starts again. The feedback voltage falls and the process repeats. Burst mode operation alternately enables and disables switching of the power MOSFET thereby reducing switching loss in standby mode.

PWM Controllers

Part Number	Number of Outputs	Control Mode	Switching Frequency (kHz)	Supply Voltage Max (V)	Output Current Max (A)	Duty Ratio (\%)	Startup Current ($\mu \mathrm{A}$)	Package
FAN7554	1	Current	500	30	1	98	200	SO-8
FAN7601*	1	Current	300	20	0.25	98	Internal Switch	DIP-8, SO-8, SSOP-10
FAN7602*	1	Current	65	20	0.25	75	Internal Switch	DIP-8, SO-8, SSOP-10
FAN7610*	1	Current	QRC	20	0.5	-	Internal Switch	DIP-14, SO-14
KA3524	-	Voltage	350	40	0.1	-	8000	DIP-16
KA3525A	2	Voltage	-	40	0.5	-	8000	DIP-16
KA3842A	1	Current	500	30	1	100	200	DIP-8, SO-14
KA3842B	1	Current	500	30	1	100	450	DIP-8, SO-14
KA3843A	1	Current	500	30	1	100	200	DIP-8, SO-14
KA3843B	1	Current	500	30	1	100	450	DIP-8, SO-14
KA3844B	1	Current	500	30	1	50	450	DIP-8, SO-14
KA3845	1	Current	500	30	1	50	450	DIP-16
KA3846	2	Current	500	40	0.5	100	200	DIP-16
KA3882E	1	Current	500	30	1	100	200	SO-8
KA7500C	2	Voltage	300	42	0.25	-	1000	DIP-16, SO-16
KA7552A	1	Voltage	600	30	1.5	74	150	DIP-8
KA7553A	1	Voltage	600	30	1.5	49	150	DIP-8
KA7577	1	Voltage	208	31	0.5	53	150	DIP-16
ML4823	1	Voltage	1000	30	-	80	1100	DIP-16, SO-16

NOTE: FAN7602 and FAN7610 under development
*Burst Mode Operation reduces system standby power to IW or less

Power Factor Correction (PFC) Standalone and PFC/PWM Combo Controllers

Fairchild's full line of both stand alone PFC controllers and PFC/PWM combo controllers offer crucial cost-and energysaving solutions that address the demanding requirements of a diverse range of medium-and high-power Switch Mode Power Supply (SMPS) designs.

- Offerings include both continuous/discontinuous devices
- Current fed gain modulator for improved noise immunity
- Synchronized clock output to reduce system noise and to synchronize to downstream converter
- Patented one-pin voltage error amplifier with advanced input

Simplified Application Circuits

Power Factor Correction Stand-Alone Controllers

Part Number	PFC Control	Operating Current $(\mathbf{m A)}$	Startup Current $(\mu \mathbf{A})$	Package
FAN7527B	Discontinuous Mode	3	60	DIP-8, SOP-8
FAN7528	Discontinuous Mode	2.5	40	DIP-8, SOP-8
KA7524B	Discontinuous Mode	6	250	DIP-8, SOP-8
KA7525B	Discontinuous Mode	4	200	DIP-8, SOP-8
KA7526	Discontinuous Mode	4	300	DIP-8, SOP-8
ML4821	Average Current Mode	26	600	DIP-18, SOIC-20
FAN4810	Average Current Mode	5.5	200	DIP-16, SOIC-16
FAN4822	Average Current Mode	22	700	DIP-14, SOIC-16

Power Factor Correction Combo Controllers

Part Number	PFC Control	Fpwm Over Fpfc	Operating Current $\mathbf{(m A)}$	PWM Duty Cycle Max (\%)	Startup Current ($\mu \mathbf{A)}$	
FAN4800	Average Current Mode	1	5.5	49	200	
FAN4803-1	Input Current Shaping Mode	1	2.5	50	DIP-16, SOIC-16	
FAN4803-2	Input Current Shaping Mode	2	2.5	DIP-8, SOIC-8		
ML4824-1	Average Current Mode	1	16	50	200	DIP-8, SOIC-8
ML4824-2	Average Current Mode	2	16	50	700	
ML4826	Average Current Mode	2	22	50	700	DIP-16, SOIC-16

Optocoupler Solutions

The MICROCOUPLER ${ }^{T M}$ package platform of optocouplers reduces board space and offers stable CTR up to $125^{\circ} \mathrm{C}$, while offering high input to output isolation voltages.

- High Current Transfer Ratio, CTR at low I_{F}
- Operating Temperature Range, Topr: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Ultra small packaging - low profile 1.2 mm
- Applicable to Pb -free IR reflow soldering profile: $260^{\circ} \mathrm{C}$ peak

For a complete listing of Fairchild's Optocouplers please visit: www.fairchildsemi.com/products/opto

Optically Isolated Error Amplifiers

Fairchild's FOD27XX series optically isolated error amplifiers offer designers a comprehensive selection of reference voltages, tolerances, isolation voltages and package sizes to optimize their specific power design.

Optical Amplifiers

Part Number	V $\mathbf{R E F}^{(V)}$	Tolerance (\%)	Isolation (kV)	Package	Operating Temperature ($\left.{ }^{\circ} \mathbf{C}\right)$	(TR* (\%)	Bandwidth (kHz)
FOD2711	1.24	1	5.0	DIP-8	-40 to +85	$100-200$	30
FOD2741	2.5	$0.5-2.0$	5.0	DIP-8	-25 to +85	$100-200$	30
FOD2743	2.5	$0.5-2.0$	5.0	DIP-8	-25 to +85	$50-100$	50

[^0]
AC/DC Switch Mode Power Supply Design Guide

Voltage References and Shunt Regulators

Fairchild's suite of voltage references/shunt regulators offer flexible output voltages, space saving packages, and multiple voltage tolerances to meet the challenges of a SMPS design.

- Programmable output voltages
- Temperature compensated
- Low output noise
- Fast turn-on time

Regulators

Part Number	Preset Output Voltage (V)	Adj. Output Voltage (Min) (V)	Adj. Output Voltage (Max) (V)	Tolerance (V)	Max Current (mA)	Package
FAN4041CI	Adjustable	1.22	12	0.5	30	SOT-23
FAN4041DI	Adjustable	1.22	12	1	30	SOT-23
FAN431	2.5 Adjustable	2.5	3	2	100	TO-92
KA431S	2.5 Adjustable	2.5	37	2	100	SOT-23F
LM336Bx5	5 Adjustable	4	6	2	15	TO-92
LM336x25	2.5	2.5	37	2	15	TO-92
LM336×5	5 Adjustable	4	6	4	15	TO-92
LM431A	2.5 Adjustable	2.5	37	2	100	SOIC-8, TO-92
LM431B	2.5 Adjustable	2.5	37	1	100	SOIC-8, TO-92
LM431C	2.5 Adjustable	2.5	37	0.5	100	SOIC-8, TO-92
LM431SA	2.5 Adjustable	2.5	37	2	100	SOT-23F, SOT-89
LM431SB	2.5 Adjustable	2.5	37	1	100	SOT-23F, SOT-89
LM431SC	2.5 Adjustable	2.5	37	0.5	100	SOT-23F, SOT-89
RC431A	Adjustable	1.24	12	1.5	20	SOT-23, TO-92
TL431A	2.5 Adjustable	2.5	37	1	100	SOIC-8, TO-92
TL431CP	2.5 Adjustable	2.5	37	2	100	DIP-8

High Voltage Switching Technologies

Fairchild offers an array of switching solutions for each application

Switch Mode Power Supply IGBTs

Fairchild's SMPS IGBTs are optimized for switch mode power supply designs offering better $\mathrm{V}_{\text {SAT }} / \mathrm{E}_{\text {OFFF }}$. Additionally, this control smooths the switching waveforms for less EMI. SMPS IGBTs are manufactured using stepper based technology which offers better control and repeatability of the top side structure, thereby providing tighter specifications.

SMPS IGBTs vs. MOSFETs

- Reduce conduction losses due to low saturation voltage
- Reduce current tail, reduces switching losses
- Improve transistor and system reliability
- IGBT advantage in current density facilitates higher output power

Reduce System Cost

- Smaller die size for higher voltages reduces overall costs
- May often eliminate components
- Increase operating frequency and reduce transformer/filter cost
- Fastest switching IGBTs in the market today

Stealth ${ }^{\text {TM }}$ Diode Co-Pack

- Avalanche energy rated
- Offers soft recovery switching ($S=t b / t a>1$) at rated current, high switching di/dt, and hot junction temperature $\left(125^{\circ} \mathrm{C}\right)$
- Maximize IGBTs efficiency with the improved lower reverse recovery charge $\left(Q_{R R}\right)$ and reduced $I_{\text {rrm }}$
- Reduces switching transistor turn-on losses in hard switched applications
- Reduces EMI
- Offers reverse recovery times ($\mathrm{t}_{\text {rr }}$) as low as 25 ns - superior to fast recovery diode MOSFETs

Diode Recovery Comparative Data

Time $=25 \mathrm{~ns} /$ div

- Elimination of snubber circuit becomes possible
- Improved device efficiency with the improved lower reverse recovery charge $\left(Q_{R R}\right)$ and reduced $I_{\text {rrm }}$
- Reduces switching transistor turn-on losses in hard switched applications

High-Voltage MOSFETs

SuperFET and QFET technologies are high voltage MOSFETs from Fairchild with outstanding low on-resistance and low gate charge performance, a result of proprietary technology utilizing advanced charge balance mechanisms.

- Ultra-low $R_{D S(O N)}(0.32 \Omega)$, typical
- Best-in-class di/dt (1430A/ $\mu \mathrm{s}$, max)
- Low output capacitance (Coss $=35 \mathrm{pF}$, typical)

Fairchild MOSFET Technology Comparison

MOSFET Selection Table

$V_{\text {DSS }}$ Specification	QFET ${ }^{\text {TM }}$	C-Series	V2-Series	SuperFET ${ }^{\text {TM }}$
200V	FQP19N20	FQP19N20C	FQP18N20V2	
RDS(ON), typ (Ω)	0.12	0.135	0.12	-
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$, max (Ω)	0.15	0.017	0.14	-
Q_{g}, typ (nC)	31.00	40.50	20.00	-
$\left.\mathrm{Q}_{\mathrm{gd} \text {, typ (}} \mathrm{nC}\right)$	13.50	22.50	10.00	-
400V	FQP11N20	FQPIIN40C	-	
RDS(ON), typ (Ω)	0.38	0.43	-	-
RDS(ON), max (Ω)	0.48	0.53	-	-
Q_{g}, typ (nC)	27.00	28.00	-	-
$\mathrm{Q}_{\mathrm{gd} \text {, typ }}(\mathrm{nC})$	12.30	15.00	-	-
500V	FQP5N50	FQP5N50C	FQP18N50V2	
Ros(on), typ (Ω)	1.36	1.072	0.23	-
$\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}$, max (Ω)	1.80	1.40	0.265	-
Q_{g}, typ (nC)	13.00	18.00	42.00	-
$\left.\mathrm{Q}_{\mathrm{gd} \text {, typ (}} \mathrm{nC}\right)$	6.40	9.70	14.00	-
600V	FQP7N60	FQP8N60C	-	FCP11N60
Ros(on), typ (Ω)	0.8	0.975	-	0.32
RDS(ON), max (Ω)	1.00Ω	1.2Ω	-	0.38
Q_{g}, typ (nC)	29.00	28.00	-	40.00
$\left.\mathrm{Q}_{\mathrm{gd} \text {, typ (}} \mathrm{nC}\right)$	14.50	12.00	-	21.00
800V	FQP7N80	FQP7N80C	-	-
RDS(ON), typ (Ω)	1.2	1.59	-	-
RDS(ON), max (Ω)	1.5	1.9	-	-
Q_{g}, typ (nC)	40.00	27.00	-	-
$\mathrm{Q}_{\mathrm{gd} \text {, typ }}(\mathrm{nC})$	20.00	10.60	-	-

Packages

TO-3P

8-SOP

TO-3PF

12-PAK

TO-264

TO-92L

TO-220F

SOT-223

Additional Discrete Components

Fairchild is a leading supplier of discrete components providing a broad portfolio in an array of packages and functions to meet each design need, including:

- Low-voltage MOSFETs
- Low-voltage MOSFET and Schottky combos

- Bipolar transistors and JFETs

Low-voltage MOSFET BGAs combine small footprint, low profile, low $R_{D S(O N)}$, and low thermal resistance to effectively address the needs of space-sensitive, performance-oriented load management and power conversion applications. For additional information on Fairchild's BGA packaging and product selection, visit www.fairchildsemi/products/ discrete/power bga.html
Fairchild's patented FLMP packaging eliminates conventional wire-bonds and also provides an extremely low thermal resistance path between the PCB and the MOSFET die (drain connection). This can greatly improve performance compared to many other MOSFET packages by reducing both the electrical and the thermal constraints. For additional information on Fairchild's FLMP packaging and product selection, visit www.fairchildsemi/products/discrete/flmp.html

Package Impedance Comparisons

Package Description	$\mathbf{L}_{\mathbf{d d}}(\mathbf{n H})$	$\mathbf{L}_{\mathbf{s s}}(\mathbf{n H})$	$\mathbf{L}_{\mathbf{g g}}(\mathbf{n H})$	$\mathbf{R}_{\mathbf{d}}(\mathbf{m} \Omega)$	$\mathbf{R}_{\mathbf{s}}(\mathbf{m} \Omega)$	$\mathbf{R}_{\mathbf{g}}(\mathbf{m} \Omega)$
$2 \times 2.5 \mathrm{~mm}$ BGA	0.056	0.011	0.032	0.05	0.16	0.79
$4 \times 3.5 \mathrm{~mm}$ BGA	0.064	0.006	0.034	0.02	0.06	0.95
$5 \times 5.5 \mathrm{~mm}$ BGA	0.048	0.006	0.041	0.01	0.04	0.78
FLMP (Large 3s)	0.000	0.744	0.943	0.002	0.245	2.046
FLMP (Large 7s)	0.000	0.194	0.921	0.002	0.137	2.038
SO-8	0.457	0.901	1.849	0.12	2.04	20.15
SO-8 Wireless	0.601	0.709	0.932	0.16	0.23	1.77
IPAK (TO-251)	2.920	3.490	4.630	0.25	0.74	8.18
DPAK (TO-252)	0.026	3.730	4.870	0.00	0.77	8.21
D2PAK (TO-263)	0.000	7.760	9.840	0.00	0.96	12.59

Examples of Typical Application Circuits

1W Power Supply with less than 100mW Standby Power using FSD2 10
Typical Application - Small home or factory automation appliances

[^1]This compact non-isolated flyback solution draws less than 100 mW standby power over the whole input voltage range. This example shows a 9 V output system. Here the FSD2 10 is powered from an auxiliary winding rather than directly from the high voltage bus. For output voltages of 12 V and over, the device may be powered directly from the output winding. A low cost Zener diode circuit provides the regulation reference.

- Less than 100 mW standby power
- Ideal for applications permanently connected to an AC supply
- Overload protection circuit distinguishes between temporary and permanent overload
- Device does not shut down during load surge conditions
- Inherent short circuit protection
- Frequency modulation reduces EMI reduction circuitry
- Low cost, compact solution possible

Fairchild Devices Description

FSD210M	Fairchild Power Switch $(0.3 \mathrm{~A} / 134 \mathrm{kHz})$
P6KE150A	Transient Voltage Suppressor $600 \mathrm{~W} / 150 \mathrm{~V})$
EGP10D	Fast Recovery Diode (1A/200V)
BZX84C9	Zener Diode (9V)
UF4007	Fast Recovery Diode (1A/1000V)
1N4007	General Purpose Diode (1A/1000V)
FDLL4148	General Purpose Diode (10mA/100V)
BC847B	General Purpose Transistor

Examples of Typical Application Circuits

Dual Negative Output Non-Isolated Flyback using FSD200

Typical Application - Home appliance control board power supply

A dual non-isolated flyback is used to generate voltages which are negative with respect to the neutral power line. This is used in applications where triacs are driven, such as in household appliances. A Zener diode, a bipolar transistor and a diode allow the negative voltage to be regulated by the FPS. The dual input diode helps to protect against line transients.

- Generation of two negative outputs referred to the input line
- Useful for applications using triacs
- High switching frequency reduces the required inductance
- More compact, lower cost core
- Frequency modulation reduces EMI reduction circuitry
- Split 400V input capacitor and input inductor sufficient in most cases

Fairchild Devices

FSD200M
P6KE150A
EGP10D
BZX84C5V1
UF4007
1N4007
FDLL4148
BC847B

Description

Fairchild Power Switch (0.3A/134kHz)
Transient Voltage Suppressor (600W/150V)
Fast Recovery Diode (1A/200V)
Zener Diode (5.1V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode (1A/1000V)
General Purpose Diode (10mA/100V)
General Purpose Transistor

Examples of Typical Application Circuits

10W Single Output Isolated Flyback using FSDM0265RN and Zener Diode
Typical Application - Power bricks and single-phase frequency inverters

The FSDM0265RN contains a PWM controller and a MOSFET on two different chips. The 650 V MOSFET is fully avalanche rated and tested which leads to increased system reliability. This application shows a cost reduced feedback circuit using a Zener diode. R104 is used to reduce the current limit. Higher power parts in the green FPS family have a higher current limit and a lower RDS(ON) than the lower power parts. Using a lower $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ part increases the efficiency, particularly at low input voltages. So replacing a low power part with a high power part increases the efficiency but also the current limit. If it were not possible to reduce the current limit, the flyback transformer would have to be rated at the higher current limit, making it more expensive.

- FSDM0265RN has a fully avalanche rated MOSFET
- Robust performance under transient conditions
- Overload protection circuit distinguishes between temporary and permanent overload
- Device does not shut down during load surge conditions
- Inherent short circuit protection
- Current limit may be lowered using an external resistor
- Increased flexibility in choice of range of FPS parts

Fairchild Devices

FSDM0265RN BZX84C3V9
HllA817A
SB540
UF4007
1N4007
1N4148

Description

Fairchild Power Switch (1.5A/70kHz)
Zener Diode (3.9V)
Transistor Optocoupler
Schottky Diode (5A/40V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode (1A/1000V)
General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$)

Examples of Typical Application Circuits

10W Multiple Output Isolated Flyback using FSD2 10 with Primary Side Regulation

Typical Application - Set top boxes, decoders and small DVD players

Multiple output flyback converters are used in applications where power is supplied to diverse sub-systems such as drives, tuners, audio stages and complex processor and logic circuits. Primary side regulation is used in this circuit to reduce the total cost. For this power level and above it is more cost effective to use four diodes in a full bridge configuration than a single diode with a larger capacitor. For high current outputs it is recommended to use a Schottky diode on the secondary side.

- Primary side regulation reduces system cost
- Cross regulation is good, total regulation worse than with an optocoupler solution
- Frequency modulation approach minimizes EMI circuitry
- Common-mode choke can be replaced by a simple dual capacitor, dual low cost inductor circuit
- Overload protection circuit distinguishes between temporary and permanent overload
- Device does not shut down during load surge conditions from drive unit
- Inherent short circuit protection

Fairchild Devices Description

FSD210M Fairchild Power Switch ($0.3 \mathrm{~A} / 134 \mathrm{kHz}$)
BZX84Cxx Zener Diodes (10V, 12V)
P6KE200
SB140
1N4935
Transient Voltage Suppressor (600W/200V)
Schottky Diode (1A/40V)
Fast Recovery Diode (1A/600V)
UF4007 Fast Recovery Diode (1A/1000V)
1N4007 General Purpose Diode (1A/1000V)
1N4148 General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$)
BC546B General Purpose Transistor

Examples of Typical Application Circuits

2.5W Single Output Isolated Flyback using FSD200 with KA431 Reference

Typical Application - Isolated main or standby power supplies for household appliances

In this converter, isolation is provided by the transformer and the H11A817A optocoupler. Output accuracy is improved using the KA431 voltage reference. The values R201, R203, C206, R204 and C104 set the closed loop control parameters and performance. Using a Schottky diode is a cost-effective method of improving efficiency where needed.

- Feedback circuit using KA431 reference and H11A817A optocoupler
- More accurate regulation over line, load and temperature than with a Zener diode
- Schottky diode used in output stage
- Cost-effective means of improving efficiency
- Integrated soft start function
- Prevents power surges during switch-on time

Fairchild Devices

FSD200M
KA431
H11A817A
SB180
UF4007
1N4007

Description

Fairchild Power Switch (0.3A/134kHz)
2.5 V Reference (2.5V)

Transistor Optocoupler
Schottky Diode (1A/80V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode (1A/1000V)

Examples of Typical Application Circuits

180W-200W Quasi-Resonant Flyback with Input Power Factor Correction using KA5Q1265RF, FAN7527B, and FQP13N50C

Typical Application - Color Televisions

Examples of Typical Application Circuits

180W-200W Quasi-Resonant Flyback with Input Power Factor Correction using KA5Q1265RF, FAN7527B, and FQP13N50C (Continued)
 Typical Application - Color Televisions

The circuit shown consists of a PFC stage built around the FAN7527B/FQP13N50C/EGP30J circuit and the quasi-resonant PWM stage built around the KA5Q1265RF/T1 circuit. This circuit is suited for input voltages in the range from around 195 V to 265 V .

The transition mode PFC stage generates a DC bus voltage of around 400V. The purpose of the stage is to reduce the harmonic content of the input current drawn from the AC supply as required by the EN61000-3-2 standard. An additional benefit is that the input power factor is very high.

The KA5Q1265RF circuit generates the required output voltages using a multiple output flyback configuration. The device operates in discontinuous mode and detects the point where the secondary current has dropped to zero. The device then switches on after a delay set by the circuit around C 105 . As the delay is chosen to be at the first minimum of the primary side voltage ring as it changes from $\mathrm{V}_{\mathrm{in}}+\mathrm{n} \mathrm{V}_{\mathrm{O}}$ to $\mathrm{V}_{\mathrm{in}}-\mathrm{n} \mathrm{V}_{\mathrm{O}}$ the device is switched on at a low voltage, which reduces the switching loss. The switching frequency is therefore asynchronous and varies with the load. This reduces the visible effect of switching noise on the television screen. Fixed frequency switching noise would be seen as diagonal lines on the screen. The turns ratio is chosen to be unusually low for a standard flyback because the output voltage on the main winding is exceptionally high. This keeps the reflected voltage $n \mathrm{~V}$ 。 low.

If the load on a quasi-resonant flyback circuit is reduced, the switching frequency increases which causes a reduction in efficiency.

The KA5Q series has a burst mode of operation. In normal operation the High/Low signal is High. When this signal which is typically supplied by a microcontroller is Low, the current increases through the optocoupler, the feedback voltage goes to ground and the device enters burst mode. In this case the output voltages drop until the voltage supplied to the chip through the auxiliary winding drops to around 12 V . The device remains in hysteretic burst mode until the feedback voltage increases. In this low power mode, the PFC chip is deactivated via D304. In normal operation, the auxiliary winding voltage is around 24 V , so there is sufficient voltage to power up the PFC chip. In burst mode, the FPS voltage is between 11 V and 12 V , so the FAN7527B chip is deactivated, as its supply voltage is around 8 V lower than this.

- Complete PFC and PWM solution for a color television power supply
- High efficiency (typically 90\% at full load)
- High power factor and low input current harmonics
- Quasi-resonant mode ideal for TV applications
- High efficiency due to lower voltage switching
- Asynchronous switching is not at constant frequency
- Slower dV/dt causes lower internal radiated interference
- Supports low power standby
- Hysteretic burst mode for KA5Q1265RF device
- FAN7527B PFC controller deactivated at low power

Fairchild Devices Description

KA5Q1265RF
FAN7527B
FQP13N50C
EGP30J
1N4937
GBU4M
BZX85C8V2
Zener Diode (8.2V)

Thild Power Switch (8A/quasi resonant)
Transition mode PFC controller
High Voltage MOSFET (13A/500V)
Fast Recovery Diode (3A/600V)
Fast Recovery Diode (1A/600V)
Bridge Rectifier (4A/1000V)

Fairchild Devices Description

KA431 2.5V Reference (2.5V)

H11A817A Transistor Optocoupler

EGP20K
FYPF0545
1N4007
1N4148

Fast Recovery Diode (1A/200V)
Fast Recovery Diode (1A/600V)
Fast Recovery Diode (5A/45V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$)

Examples of Typical Application Circuits

16W Multiple Output Isolated Flyback Converter using FSDM0265RN

Typical Application - Set top boxes, decoders, and small DVD players
Industrial and communications applications using FPGAs and complex logic chips

The isolated, multiple output application shown is suited to applications requiring all of the common logic supply voltages: $5 \mathrm{~V}, 3.3 \mathrm{~V}$, 2.5 V and 1.2 V . The flyback architecture is easily expandable: two additional outputs at 12 V and 6.6 V are shown in this application. The design is scalable to higher power levels by changing the size of the FPS device and the transformer. The FSDM0265RN uses current mode control which provides excellent response to line and load transient conditions. The flexible overload protection can distinguish between a temporary current surge and a longer term overload condition. The over current latch is a current limit which is active even during the blanking time. This provides additional system robustness against a secondary diode short circuit condition.

- FSDM0265RN has a fully avalanche rated MOSFET with overcurrent latch
- Robust performance under transient conditions
- Device switches off if there is a secondary diode short
- Overload protection circuit distinguishes between temporary and permanent overload
- Device does not shut down during load surge conditions
- Inherent short circuit protection
- Current limit may be lowered using an external resistor
- Increased flexibility in choice of range of FPS parts

Fairchild Devices
FSDM0265RN
FAN1112D
FAN1616AS25
H11A817A
KA431
DF10M

Description

Fairchild Power Switch (1.5A/70kHz)
Voltage Regulator ($1.2 \mathrm{~V} / 1 \mathrm{~A}$)
Voltage Regulator ($2.5 \mathrm{~A} / 0.5 \mathrm{~A}$)
Transistor Optocoupler
2.5 V Reference (2.5V)

Bridge Rectifier

Fairchild Devices

SB180
SB330
SB360
UF4007
1N4148

Description

Schottky Diode (1A/80V)
Schottky Diode (3A/30V)
Schottky Diode (3A/60V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$)

Examples of Typical Application Circuits

40W Isolated Flyback Power Supply using FSDM07652R

Typical Application - AC Input Industrial Control, LCD Monitor

This shows a higher power isolated flyback application, sharing the same features as many of the lower power applications. A lower inductance value is used to ensure that the associated leakage inductance is also kept low in this application, remembering that snubber losses are proportional to the leakage inductance and to the square of the current.

- FPS containing PWM IC with co-packaged MOSFET solution is very robust and improves system reliability
- Fully avalanche rated switch
- Over current protection for secondary diode short circuit
- Over voltage protection
- Current mode control gives excellent line and load regulation
- Better regulation
- Overload protection distinguishes between temporary and permanent overload
- Internal soft start reduces inrush current and output overshoot on turn on

Fairchild Devices Description

FSDM07652R
H11A817A
KA431
1N4007
1N4148
KBPO6M

Fairchild Power Switch (2.5A/70kHz)
Optocoupler
2.5V Reference (2.5V)

General Purpose Diode (1A/1000V)
General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$)
Bridge Rectifier Diode (1.5A/600V)

Examples of Typical Application Circuits

24W Flyback Converter using 1500V IGBT and FAN7554

Typical Application - Motor Drives, Uninterruptible Power Supplies, 3-Phase Input Systems

This inventive flyback solution uses a cost-effective 1500 V IGBT as the main switching element, offering a more robust design. The alternative option for the switch would be a MOSFET with a rated voltage exceeding 1000V, which is a more expensive solution. The FAN7554 PWM controller provides the PWM regulation. Frequency compensation comes from the standard KA431
reference circuit.

- Flyback converter with cost-effective 1500 V IGBT
- Ensures high robustness against external voltage transients at a reasonable cost
- Complete, tested sub-system solution from Fairchild's Global Power Resource with test circuit data
- Fairchild Semiconductor offers all semiconductor components in the circuit
- Efficiency exceeds 78% for 24 W output, 600 V input, 20 kHz switching frequency
- Efficiency exceeds 74% for 24 W output, 600 V input 40 kHz switching frequency
- IGBT temperature rises less than $40^{\circ} \mathrm{C}$ in test circuit

Fairchild Devices Description

SGF5N150UFTU 1500V,5A IGBT
FAN7554
EGP20D
H1lA817A.W
KA431LZ
1N4007
UF4007
PWM Controller
Fast Recovery Diode (1A/200V)
Transistor Optocoupler
2.5 V Reference (2.5V)

Diode (1A/1000V)
Fast Recovery Diode (1A/1000V)
General Purpose Diode ($10 \mathrm{~mA} / 100 \mathrm{~V}$

Design Ideas

250W to 450W Desktop PC Forward Switch Mode Power Supply

Suggested Products

Bridge Rectifier	PFC IC	PFC MOSFET	Boost Diode	PWM IC	PWM MOSFET	Rectifier	Optocoupler
2KBP10M	ML4821	FCP20N60	FFP05U60DN	KA384X	FQP8N80C	12V FPFO6U20DN	H11A817
GBU4M	FAN4810	FQP18N50V2	RHRP860	KA3525	FQP9N90C	12V FFPFFIOU20DN	MOC819
GBU6M	FAN4822	FDH27N50	FFP10U60DN		FQAION80C	12V FFAF10U20DN	
KBL10		FCP1 1N60	IRL9R860		FQAIIN90	5V FYAF3004DN	
						3.3V FYP1504DN	
						3.3V FYP2004DN	
						3.3V FYAF3004DN	

Design Ideas

500W Telecom/Server Double Switch Forward Switch Mode Power Supply

Suggested Products

Bridge Rectifier	PFC IC	PFC MOSFET	Boost Diode	PWM MOSFET	Synch. Rectifier	Optocoupler
2KBP10M	ML4821	FQA24N50	ISL9R860	FQH18NH50V2	FDP060AN08A0	H11A817
GBU4M	FAN4810	FCP11N60	IRL9R1560	FQA24N50	FDP047AN08AO	MOC819
GBU6M	FAN4822	FDH44N50	RHRP860	FQH27N50	FDP3652	
KBL10			RHRP1560	FQH44N50	FDP3632	
				FCP11N60	FQP90N10V2	

Design Ideas

500W Telecom/Server ZVS Phase-Shift Full Bridge Switch Mode Power Supply

Suggested Products

Bridge Rectifier	PFC IC	PFC MOSFET	Boost Diode	PWM MOSFET	Synch. Rectifier	Optocoupler
2KBP10M	ML4821	FQA24N50	ISL9R860	FQH18N50V2	FDP060AN08A0	H11A817
GBU4M	FAN4810	FCP11N60	IRL9R1560	FQA24N50	FDP047AN08A0	MOC819
GBU6M	FAN4822	FCP20N60	RHRP860	FDH27N50	FDP3652	
KBL10		FDH44N50	RHRP1560	FDH44N50	FDP3632	
				FCP11N60	FQP90N10V2	

Design Guidelines for Off-Line Flyback Converters using Fairchild Power Switch (FPS ${ }^{\text {M }}$) (AN-4137)

Introduction

Designing a switched mode power supply (SMPS) is a complex process with many variables and considerations. While most power supply design engineers have developed their own methods, here is an overview describing the design of a flyback converter using Fairchild FPS devices. For a more detailed explanation of this procedure, refer to Application Note AN-4137, Design Guidelines for Off-line Flyback Converters Using Fairchild Power Switch on www.fairchildsemi.com/an/AN/AN-4137.pdf

System Specifications

Once the initial parameters of the power supply are known, the design can begin. These parameters include the min and max input voltage, input frequency, maximum output power, and estimated efficiency. From this, the initial system specifications can be calculated. The maximum input power can be determined by $\mathrm{P}_{\mathrm{IN}}=\mathrm{P}_{\mathrm{O}} / \mathrm{E}_{\mathrm{ff}}$.

The bulk capacitor can be estimated as $2-3 \mu \mathrm{~F}$ per watt of input power for universal input range $\left(85-265 \mathrm{~V}_{\mathrm{RMS}}\right)$ and $1 \mu \mathrm{~F}$ per watt of input power from European input range (195V-265V ${ }_{\text {RMS }}$).

Next, the maximum duty cycle can be determined. The duty cycle should be as large as possible providing there is enough margin in the MOSFET voltage rating.

Transformer and FPS Device

Worst case conditions should be used when calculating the inductance for the primary side of the transformer $\left(\mathrm{L}_{\mathrm{M}}\right)$. For both continuous and discontinuous modes of operation, the worst case condition is at full load and minimum input voltage. Once L_{M} is calculated, the maximum peak current ($\mathrm{I}_{\mathrm{ds}}{ }^{\text {peak }}$) and RMS current ($\mathrm{I}_{\mathrm{ds}}{ }^{\text {rms }}$) of the MOSFET in normal operation can be established.

When choosing the FPS device for the design, it is important to make sure that the pulse-by-pulse current limit level $\left(\mathrm{I}_{\text {over }}\right)$ is greater than the maximum peak current of the MOSFET.

Once the proper FPS device is chosen, the transformer can be designed. The first step is to choose the proper core depending on the input voltage range, number of outputs and switching frequency of the FPS device. The initial core selection will be somewhat rough due to the many variables involved, but the manufacturer's core selection guide should be referred to when making this initial choice. With the selected core, calculate the minimum number of primary turns $\left(\mathrm{N}_{\mathrm{P}}{ }^{\text {min }}\right)$ by
using the cross sectional area of the core $\left(\mathrm{A}_{\mathrm{e}}\right)$ and the saturation flux density ($\mathrm{B}_{\text {sat }}$) which can be extracted from the B-H curves on the manufacturer's datasheet. The turns ratio and resultant number of secondary turns for the transformer can then be found. Once the number of turn on the primary side is determined, the gap length of the core is calculated followed by the calculation of the wire diameter for each winding to make the transformer design is complete.

Output

In its most basic form, the output structure of a flyback converter typically consists of a series rectifier diode and output capacitor placed in parallel with the output. There may be additional LC networks following this configuration for filtering purposes in the event that the ripple current specifications of the output capacitor cannot be met.

To determine the output rectifier diode, the maximum reverse recovery voltage $\left(\mathrm{V}_{\mathrm{RRM}}\right)$ and the RMS current of the diode must be calculated. With that, a diode can be chosen from Fairchild's diode selection guide.

When choosing the output capacitor, ensure that the calculated ripple current is smaller than the ripple current given on the capacitor's datasheet. If a post filter is necessary, set the corner frequency from $1 / 10$ th to $1 / 5$ th of the FPS switching frequency.

Snubber

An RCD snubber network is needed when there is a high voltage spike on the drain of the FPS MOSFET when it is in the OFF state. This spike can lead to failure of the FPS device. The snubber network will clamp the voltage and protect the circuit. The first step is to determine the snubber capacitor voltage at the minimum input voltage and maximum load $\left(\mathrm{V}_{\mathrm{sn}}\right)$. The power dissipated in the snubber network can then be calculated.

The snubber resistor should be chosen with the proper wattage rating according to the power loss of the circuit. The capacitor voltage for the snubber is then calculated under maximum input and full load conditions.

After choosing the snubber resistor and capacitor, the snubber diode can then be chosen. The maximum voltage stress on the MOSFET drain $\left(\mathrm{V}_{\mathrm{ds}}{ }^{\text {max }}\right)$ should be calculated and should be below 90% of the rated voltage of the MOSFET $\left(\mathrm{BV}_{\mathrm{dss}}\right)$. The voltage rating of the snubber diode should be higher than the MOSFET BV dss .

Design Guidelines for Off-Line Flyback Converters using Fairchild Power Switch (FPS ${ }^{\text {M }}$) (Continued) (AN-4137)

Feedback loop

Most FPS devices employ current mode control, therefore the feedback loop can be typically implemented with a one pole and one zero compensation circuit. Calculating the control-to-output transfer function origin is different depending on whether the circuit is operating in continuous or discontinuous mode. When a continuous mode converter design has multiple outputs, the low frequency control-to-output transfer function is proportional to the parallel combination of all of the load resistances, adjusted by the square of the turns ratio.

Design of the feedback loop consists of the following steps.
a) Determine the crossover frequency $\left(\mathrm{f}_{\mathrm{c}}\right)$. For CCM mode flyback, set f_{c} below $1 / 3$ of right half plane (RHP) zero to minimize the effect of the RHP zero. For DCM mode fc can be placed at a higher frequency, since there is no RHP zero.
b) When an additional LC filter is employed, the crossover frequency should be placed below $1 / 3$ of the corner frequency of the LC filter, since it introduces a -180 degrees phase drop. Never place the crossover frequency beyond the corner frequency of the LC filter. If the crossover frequency is too close to the corner frequency, the controller should be designed to have a phase margin greater than 90 degrees when ignoring the effect of the post filter.
c) Determine the DC gain of the compensator $\left(\mathrm{w}_{\mathrm{i}} / \mathrm{w}_{\mathrm{zc}}\right)$ to cancel the control-to-output gain at f_{c}.
d) Place a compensator zero $\left(\mathrm{f}_{\mathrm{zc}}\right)$ around $\mathrm{f}_{\mathrm{c}} / 3$.
e) Place a compensator pole $\left(\mathrm{f}_{\mathrm{pc}}\right)$ above $3 \mathrm{f}_{\mathrm{c}}$.

Application Note Highlight

Power Factor Correction (PFC) Basics (AN-42047)

What is Power Factor?

Power Factor (PF) is defined as the ratio of the real power (P) to apparent power (S), or the cosine (for pure sine wave for both current and voltage) that represents the phase angle between the current and voltage waveforms (see Figure 1). The power factor can vary between 0 and 1 , and can be either inductive (lagging, pointing up) or capacitive (leading, pointing down). In order to reduce an inductive lag, capacitors are added until PF equals 1 . When the current and voltage waveforms are in phase, the power factor is $1\left(\cos \left(0^{\circ}\right)=1\right)$. The whole purpose of making the power factor equal to one is to make the circuit look purely resistive (apparent power equal to real power).

Real power (watts) produces real work; this is the energy transfer component (example electricity-to-motor rpm). Reactive power is the power required to produce the magnetic fields (lost power) to enable the real work to be done, where apparent power is considered the total power that the power company supplies, as shown in Figure 1. This total power is the power supplied through the power mains to produce the required amount of real power.

Figure 1. Power Factor Triangle (Lagging)

The previously-stated definition of power factor related to phase angle is valid when considering ideal sinusoidal waveforms for both current and voltage; however, most power supplies draw a non-sinusoidal current. When the current is not sinusoidal and the voltage is sinusoidal, the power factor consists of two factors: 1) the displacement factor related to phase angle and 2) the distortion factor related to wave shape. Equation 1 represents the relationship of the displacement and distortion factor as it pertains to power factor.
$P F=\frac{\operatorname{Irms}(1)}{\operatorname{Irms}} \cos \theta=K d \cdot K \theta$
$\operatorname{Irms}(1)$ is the current's fundamental component and Irms is the current's RMS value. Therefore, the purpose of the power factor correction circuit is to minimize the input current distortion and make the current in phase with the voltage.

When the power factor is not equal to 1 , the current waveform does not follow the voltage waveform. This results not only in power losses, but may also cause harmonics that travel down the neutral line and disrupt other devices connected to the line. The closer the power factor is to 1 , the closer the current harmonics will be to zero since all the power is contained in the fundamental frequency.

Understanding Recent Regulations

In 2001, the European Union put EN61000-3-2, into effect to establish limits on the harmonics of the ac input current up to the $40^{\text {th }}$ harmonic. Before EN61000-3-2 came into effect, there was an amendment to it passed in October 2000 that stated the only devices required to pass the rigorous Class D (Figure 2) emission limits are personal computers, personal computer monitors, and television receivers. Other devices were only required to pass the relaxed Class A (Figure 3) emission limits.

Figure 2. Both Current and Voltage Waveforms are in Phase with a PF =1 (Class D)

Figure 3: This is What is Called Quasi-PFC Input, Achieving a PF Around 0.9 (Class A)

Refer to the complete application note, AN-42047, for additional information on:

- Inefficiency causes
- Boost converters
- Modes of operation

Application Note Highlight

Choosing Power Switching Devices
 for SMPS Designs
 (AN-7010)

This application note identifies the key parametric considerations for comparing IGBT and MOSFET performance in specific switch mode power supply (SMPS) applications. Parameters such as switching losses are investigated in both hard-switched and soft-switched zero voltage switching (ZVS) topologies. The three main power switch losses: turn-on, conduction and turn-off are described relative to both circuit and device characteristics. The differences in gate drive requirements are explained for the two voltage controlled products. Finally, the impact of the specific cooling system on device selection is explored.

Turn-On Losses

The turn-on characteristics of IGBTs and power MOSFETs are quite similar except that IGBTs have a longer voltage fall time. Referencing the basic IGBT equivalent circuit, Figure 1, the time required to fully modulate the minority carrier PNP BJT collector base region results in a turn-on voltage tail.

Figure 1 - IGBT Equivalent Circuit

This delay results in a Quasi-Saturation effect wherein the collector-emitter voltage does not immediately fall to its $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$ value ${ }^{1}$. This turn-on effect also results in a V_{CE} voltage bump under ZVS conditions at the point where the load current transitions from the co-packed inverse parallel diode to the IGBT collector. The EON energy losses specified in datasheets is the time integral of $\mathrm{I}_{\text {collector }}$ times V_{CE} in joules per switching cycle and includes the additional losses associated with quasi-saturation.

Two E_{ON} energy parameters $\mathrm{E}_{\mathrm{ON} 1}$ and $\mathrm{E}_{\mathrm{ON} 2}$ are provided in IGBT datasheets. EON1 is the energy loss without the losses associated with hard-switched diode recovery. EON2 includes the hard-switched turn-on energy loss do to diode recovery. EON2 is measured recovering a diode identical to the co-packed diode associated with the device. A typical EON2 test circuit is illustrated in Figure 2. The test is performed with the diode at the same T_{j} as the DUT. The IGBT is switched through two
pulses to measure EON. The first pulse raises the inductor to the desired test current and the second pulse then measures the EON loss recovering this current from the diode.

Figure 2-Typical E_{ON} and $\mathrm{E}_{\text {OFF }}$ Test Circuit
Under hard-switched turn-on the gate drive voltage and impedance and the recovery characteristics of the commutated diode determine the EON switching loss. For circuits such as the conventional CCM boost PFC circuit the boost diode recovery characteristics are extremely important in controlling E_{ON} (turn-on) energy losses. In addition to selecting a boost diode with minimal T_{rr} and Q_{RR} it is also important to ensure that the diode has soft recovery characteristics. Softness, the ratio of $\mathrm{t}_{\mathrm{b}} / \mathrm{t}_{\mathrm{a}}$, has a considerable impact on the electrical noise and voltage spikes generated across the switching device. Snappy diodes with a high t_{b} period d_{i} / d_{t} fall from $I_{R M(R E C)}$ create large voltage spikes in the circuit parasitic inductances. These voltage spikes create EMI and can result in excessive reverse voltage across the diode.

In hard-switched circuits such as the full-bridge and half bridge topologies where the IGBT co-packed or MOSFET body diodes are conducting when the alternate switching device is turned on, the diode recovery characteristics determine the EON loss. For this reason it is important to select MOSFETs with Fast body diode recovery characteristics such as the Fairchild FQA28N50F FRFET ${ }^{\text {TM }}$. Unfortunately, MOSFET parasitic or body diodes are relatively slow compared to state-of-the-industry discrete diodes. For hard-switched MOSFET applications the body diode is often the limiting factor determining the SMPS operating frequency.

Typically IGBT co-packed diodes are selected for compatibility with their intended applications. Slower Ultrafast diodes with lower forward conduction losses are co-packed with slower lower $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}$ motor drive IGBTs. Conversely soft

Application Note Highlight

Choosing Power Switching Devices for SMPS Designs (Continued) (AN-7010)

recovery Hyperfast diodes such as the Fairchild Stealth ${ }^{\text {TM }}$ series are co-packed with the high frequency SMPS2 switched mode IGBTs.

Beyond selecting the right diode the designer can control Eon losses by adjusting the gate drive turn-on source resistance. Decreasing the drive source resistance will increase the IGBT or MOSFET turn-on di/dt and decrease the Eon loss. The tradeoff is between Eon losses and EMI since the higher di/dt will result in increased voltage spikes and radiated and conducted EMI. Selecting the correct gate drive resistance to meet a desired turn-on di/dt may require in-circuit testing and verification. A ballpark value may be determined from the MOSFET transfer curve, Figure 3. Assuming the FET current will rise to 10 A at turn-on and looking at the $25^{\circ} \mathrm{C}$ curve of Figure 3, the gate voltage must transition from 5.2 V to 6.7 V to reach the 10 A and the average G_{FS} is $(10 \mathrm{~A} / 6.7 \mathrm{~V}-5.2 \mathrm{~V})=6.7 \Omega$.

Figure 3 - FCP11N60 Transfer Characteristics

$$
R_{\text {gate }}=\left[V_{\text {drive }}-V_{\mathrm{GS}(\text { avg })}\right] \cdot \frac{\mathrm{G}_{\mathrm{FS}}}{(\mathrm{di} / \mathrm{dt}) \cdot \mathrm{C}_{\mathrm{iss}}}
$$

Eq. 1 - Gate drive resistance for desired turn-on di/dt
Applying this average G_{FS} value to Equation 1 with a gate drive of $\mathrm{V}_{\text {drive }}=10 \mathrm{~V}$, a desired di/dt $=600 \mathrm{~A} / \mu \mathrm{s}$ and typical FCP11N60 values $\mathrm{V}_{\mathrm{GS} \text { (avg) }}=6 \mathrm{~V}, \mathrm{C}_{\text {iss }}=1200 \mathrm{pF}$; a 37Ω turn-on gate drive resistance is calculated. Since the instantaneous G $_{\text {FS }}$ value is the slope in Figure 3 curves, GFS will vary during the Eon period, which implies a varying di/dt. The exponentially decaying gate drive current and decreasing $\mathrm{C}_{\text {iss }}$ as a function of V_{FS} also enter into this equation with an overall effect of surprisingly linear current rise.

Similar Gate drive turn-on resistance may be calculated for the IGBT. Again $\mathrm{V}_{\mathrm{GE}(\mathrm{avg})}$ and G_{FS} may be determined from the IGBT transfer characteristic curve and the C CIES value at $\mathrm{V}_{\mathrm{GE}(\text { avg })}$ should be substituted for $\mathrm{C}_{\text {iss }}$. The comparable calculated IGBT turn-on gate drive resistance is 100Ω. This higher ohm requirement is indicative of the higher IGBT G_{FS} and lower CIES. A key point here is that gate drive circuit adjustments must be made for a transition from MOSFET to IGBT.

Refer to the complete application note, AN-7010, that continues with the comparisons between MOSFETs and IGBTs on the following subjects:

- Conduction losses
- Turn off losses
- Gate drive requirements
- Thermal management
${ }^{1}$ Pittet, Serge and Rufer, Alfred "Analytical analysis of Quasi-Saturation Effect in PT and NPT IGBTs" PCIM Europe 2002
http://leiwww.epfl.ch/publications/pittet_rufer_pcim_02.pdf

AC/DC Switch Mode Power Supply Design Guide

Global Power Resource ${ }^{\text {TM }}$

Fairchild provides customers with resources to help dramatically reduce design cycle times by offering world-wide customer design labs, and advanced web-based design tools, tutorials and other application-specific on-line information.

- Design and selection tools
- Tutorials
- On-demand training
- Evaluation boards/reference designs
- For a complete list of available resources, visit us at www.fairchildsemi.com/acdc

AC/DC Switch Mode Power Supply Design Guide

Notes

For a complete listing of sales representatives and sales offices, visit www.fairchildsemi.com/cf/sales_contacts/

Americas

Fairchild Semiconductor
Customer Response Center
7701 Las Colinas Ridge,
Suite 400 Irving, Texas 75063
United States

China

Fairchild Semiconductor
(Shanghai) Company Limited
Beijng Liaison Office Room 2506,
China Resources Building
No. 8, Jianguomenbei Avenue
Beiijng 100005, P.R. China
el: 86-10-8519-2060
Fax: 86-10-8519-2061
Fairchild Semiconductor
(Shanghai) Company Limited
Shenzhen Liaison Office
Room 1506, China Resources Building
5001 Shen Nan Road East
Shenzhen 518008, P.R. Chind
Tel: 86-755-8246-3088
fax: 86-755-8246-2092
Fairchild Semiconductor
(Shanghai) Company Limited
Puxi Liaison Office
Room 2208, Kerry Centre
No. 1515 Nanjing West Road
Jingan, Shanghai 200040
P.R. China

Tel: 86-21-5298-6262
Fax: 86-21-5298-5118/9
Fairchild Semiconductor
(Shanghai) Company Limited
Chengdu Liaison Office
Unit 603, Block A
Fuhe Business Incubation Base
Chengdu Hi-Tech Zone
nnovation Service Center
12 Gaopeng Road
Chengdu 610041, Sichuan
P.R. China
el : 86-28-8515-1709
Fax : 86-28-8515-2604
Fairchild Semiconductor
(Shanghai) Company Limited
Xiamen Liaison Office
Unit D, 14/F, International Plaza
8 Lujiang Road
Xiamen 361001, Fujian
P.R. China
el : 86-592-2101-688
Fax : 86-592-2101-678
Fairchild Semiconductor
(Shanghai) Company Limited
Qingdao Liaison Office
Room 20D Hua Ren International Building
2 Jia Shandong Road
Qingdao 266071, Shandong
P.R. China

Tel : 86-532-3096-550
Fax : 86-532-3096-55

Finland
Fairchild Semiconductor
Itakatu 3 D 213
FIN-00930 Helsinki
Finland
Tel: 358-9-341 1266
Fax: 358-9-3411292

France

Fairchild Semiconductor
3 Avenue du Quebec
Immeuble Ontario
91140 Villebon sur Yvette
France
Tel: 33-1-5634-7210
Fax: 33-1-5634-7211

Germany

Fairchild Semiconductor GmbH
Oskar-von-Miller-Strasse 4e
D-82256 Fürstenfeldbruck
Germany
Tel: 49-8141-6102-0
Fax: 49-8141-6102-100
Hong Kong
Fairchild Semiconductor
Hong Kong Ltd.
19/F, CMG Asia Tower
The Gateway II
15 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: 852-2722-8338
Fax: 852-3579-2230

Italy

Fairchild Semiconductor Sr
Via Carducci, 125
20099 Sesto San Giovanni (MI)
Italy
Tel: 39-02-249111-1
Fax: 39-02-26263424

Japan

Fairchild Semiconductor Japan Ltd
6F Bancho-Kaikan
12-1 Goban-cho, Chiyoda-ku
Tokyo, 102-0076 Japan
Tel: 81-3-5275-8380
Fax: 81-3-5275-8390
Fairchild Semiconductor Japan Ltd.
Osaka Office
Shin-Osaka Meiko Building 8 F
4-3-12, Miyahara, Yodogawa-ku
Osaka, 532-0003 Japan
Tel: 81-6-6398-3670
Fax: 81-6-6398-3680

Korea

Fairchild Korea Semiconductor, Ltd.
Bucheon Office
82-3, Dodang-Dong,
Wonmi-Ku, Bucheon
Gyounggi-do, 420-71 1 Korea
Tel: 032-680-1 114
Fax: 82-32-680-1949

Fairchild Korea Semiconductor, Ltd
Suwon Office
5th Floor Saemaeul-hoi Building
1122-12, Ingye-Dong
Paldal-Gu, Suwon-Si Gyeonggi-Do 442-070
Korea
Tel: 82-31-231-3100
Fax: 82-31-231-9846
Fairchild Korea Semiconductor, Ltd.
Gumi Office
4F Saero-net Building
274-9, Songjeong-dong
Gumi-si, Gyungsang-buk-Do
730-090, Korea
Tel: 82-54-457-4111
Fax: 82-54-457-4121

Mexico

Fairchild Semiconductor
Av. Vallarta \#6503 Flr. 14
Col. Cd Granjas
Zapopan Jalisco 45010
Mexico
Tel: 52-3-1 100017
Fax: 52-3-1 101878

Singapore

Fairchild Semiconductor Asia Pacific Pte Ltd
350 Orchard Road
\#20-01/03 Shaw House
Singapore 238868
Tel: 65-6836-0936
Fax: 65-6838-0321/3

Sweden

Fairchild Semiconductor
Industrivagen 7
SE-171 48 Solna
Sweden
Tel: 46-8-6515530
Fax: 46-8-6515505

Taiwan

Fairchild Semiconductor
Hong Kong Ltd. Taiwan Branch
18F-A, No. 167
Tun Hwa North Road
Taipei 10500, Taiwan
Tel: 886-2-2712-0500
Fax: 886-2-2546-7188
UK
Fairchild Semiconductor Ltd.
Interface House
Interface Business Park
Wootton Bassett
Swindon SN4 8QE
United Kingdom
Tel: 44-1793-856856
Fax: 44-1793-856857

FAIRCHILD
semiconi

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks: ACEx ${ }^{\text {TM }}$, Across the board. Around the world. ${ }^{T M}$, ActiveArray ${ }^{\text {TM }}$, Bottomless ${ }^{\text {TM }}$, CoolFETM ${ }^{\text {TM }}$, CROSSVOLTTM,

 PowerSaver ${ }^{\top M}$, PowerTrench®, Programmable Active Droop ${ }^{\top T M}$, QFET ${ }^{\circledR}$, QS ${ }^{\top M}$, QT Optoelectronics ${ }^{\top M}$, Quiet Series ${ }^{\top T}$, RapidConfigure ${ }^{\top M}$, RapidConnect ${ }^{\text {TM }}$, μ SerDes $^{\text {TM }}$, SILENT SWITCHER ${ }^{\circledR}$, SMART STARTTM, SPM ${ }^{\text {TM }}$, Stealth™, SuperFET ${ }^{\text {TM }}$, SuperSOT™ 3 , SuperSOT ${ }^{T M}$ - 6 , SuperSOT™.

[^0]: * CTR is specified at $l_{\text {LED }}=1 \mathrm{~mA}$

[^1]: 85V-265VAC input

